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Abstract  

The paper’s purpose is to present technology-enhanced activities with 
triangular, square, and other polygonal numbers arranged in basic 
geometric shapes – equilateral and isosceles triangles and squares. 
The author’s review of recently published mathematics education 
papers found no use of computing technology in teaching polygonal 
numbers either at the college or the pre-college levels worldwide. This 
omission served as a motivation to share and discuss computational 
algorithms designed by the author for the summation of such numbers 
within each geometric structure. A method through which those 
algorithms were used with teacher candidates is based on the 
technology-immune/technology-enabled problem-solving pedagogy. 
This method can be recommended for the modern-day teaching of 
elementary number theory and other mathematical topics across 
multiple grade levels and educational programs. The activities, 
supported by Wolfram Alpha and Maple, can be used by  instructors of 
technology-motivated mathematics teacher education courses. The 
paper argues that the power of digital tools allows future teachers of 
mathematics, in the context of elementary number theory, to 
appreciate the use of simple algorithms in achieving sophisticated 
computational outcomes. Reflective comments of teacher candidates 
(the author’s students) are shared to indicate the importance of the 
history of mathematics and the focus on mathematical visualization as 
a pedagogical approach aimed at conceptual understanding of the 
subject matter. 

Keywords:  
Number theory 
Polygonal numbers 
Teacher education 
Technology. 
 
Copyright:  
© 2024 by the author. This article is an 
open access article distributed under the 
terms and conditions of the Creative 
Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/).  
 
Publisher:  
Scientific Publishing Institute 
 
Received: 30 August 2024 
Revised: 10 October 2024 
Accepted: 21 October 2024 
Published: 31 October 2024 

 

    
Funding: This study received no specific financial support.    
Institutional Review Board Statement: Not applicable. 
Transparency: The author confirms that the manuscript is an honest, accurate, and transparent account of the study; that no vital features 
of the study have been omitted; and that any discrepancies from the study as planned have been explained. This study followed all ethical 
practices during writing. 
Competing Interests: The author declares that there are no conflicts of interests regarding the publication of this paper. 

 
 
1. Introduction 

It has been almost a century since Godfrey Harold Hardy, a prominent British number theorist, 
recommended topics of elementary number theory for early mathematical instruction (Hardy, 1929). In the 
digital era, this recommendation was reflected in similar statements by mathematicians and mathematics 
educators extending instruction from yearly grades to the entire K-16 context (Abramovich, Fujii, & Wilson, 
1995; Koshy, 2002; Vavilov, 2020; Zazkis & Campbell, 2006). One number theory topic deals with polygonal 
(figurate) numbers. The representation of numbers as simple geometric figures goes back to mathematics of 
antiquity when certain combinations of integers were used to describe various shapes and shapes were found to 
portray both explicit and hidden properties of integers. The paper is written to show how a numeric approach 
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to the concepts of elementary number theory made possible, as discussed in Abramovich et al. (1995) by 
spreadsheet modeling, can be extended to enable a symbolic approach supported by digital tools like Wolfram 
Alpha and Maple. This extension allows one using symbolic computations in the context of mathematics teacher 
education; that is, using simple coding without teaching complicated computational algorithms.  

Wolfram Alpha and Maple are examples of digital tools capable of replacing traditional paper and pencil 
algebraic transformations such as, for example, finding the sum of the first n triangular numbers. In the past, 
mathematics educators used a numeric approach to finding this sum by conjecturing its general form (as a cubic 
polynomial in the number of terms) through numerical evidence. Nowadays, a numeric approach can be 
augmented by a symbolic approach through which such polynomial is generated by software. At the same time, 
the numeric approach can still be used as the digital tools, augmented by the Online Encyclopedia of Integer 
Sequences (OEIS®, https://oeis.org/, accessed on September 5, 2024), are capable of converting numeric 
sequences into their symbolic formulations which can then be modeled numerically by a spreadsheet to verify 
the conversion through computational triangulation (Abramovich, 2023) that is, by employing more than one 
digital tool to verify mathematical results.  

Using the above-mentioned tools, the paper demonstrates different computational activities with polygonal 
numbers appropriate for several collegiate mathematics teacher education courses taught either in mathematics 
or education departments. In particular, those courses may include “Topics in mathematics for elementary 
teachers”, “Contemporary general mathematics”, Computer-based mathematics instruction”, “Secondary school 
mathematics instruction”, “Topics and research in mathematics education”, “History of mathematics” (using the 
titles of courses taught by the author over the years in master’s degree programs in the US states of Georgia, 
Illinois, and New York). One set of activities discussed below deals with such numbers arranged in equilateral 
triangles, isosceles triangles, and squares. Depending on the arrangement, a number of computational 
algorithms for the summation of polygonal numbers – triangular, square, pentagonal and, in the general case, 
m-gonal, will be developed and discussed.  

The paper emphasizes the value of technology-immune/technology-enabled (TITE) mathematical problem 
solving (Abramovich, 2022) in the modern-day teaching of elementary number theory topics, enabling formal 
reasoning and digital computation to be integrated in a mutually supportive way across different teacher 
educational programs. The TITE idea, being used in the present paper as a conceptual framework, is explained 
in the next section. This framework provides foundation for research and design methods aimed at the inquiry 
into the teaching of polygonal numbers using variety of educational tools, including digital ones. The paper 
suggests that the power of modern digital tools allows future teachers of mathematics to appreciate how by 
using simple algorithms sophisticated computational outcomes can be achieved.  
 

2. Materials and Methods 
Two types of materials have been used by the author when working on this paper. The first one is 

computational; digital tools referred to by mathematics educators in the United States as “mathematical action 
technologies” (National Council of Teachers of Mathematics, 2014).  In the paper, these technologies include 
comprehensive knowledge engine Wolfram Alpha developed by Wolfram Research (www.woframalpha.com; 
accessed on September 5, 2024) and mathematical software Maple (Char et al., 1995). The tools have been used 
by the author for symbolic computations. One reason of using both tools is mostly pragmatic – Maple is 
convenient for carrying out transformations that involve large algebraic expressions (e.g., difference between 
two sides of an identity to be proved), something that in the context of Wolfram Alpha requires meticulous typing 
those expressions as they extend the visual size of the program’s input box. Another reason is mostly epistemic 
– the use of more than one digital tool within a single problem provides the result with computational 
triangulation (Abramovich, 2023) aimed at avoiding both procedural and conceptual errors. 

The second type of materials used by the author included teaching and learning mathematics standards 
used by countries such as Canada (Ontario Ministry of Education, 2020; Western and Northern Canadian 
Protocol, 2008) Japan (Isoda, 2010; Takahashi, Watanabe, Yoshida, & McDougal, 2006) Singapore (Ministry of 
Education Singapore, 2020) South Africa (Department of Basic Education, 2018) and the United States 
(Association of Mathematics Teacher Educators, 2017; Conference Board of the Mathematical Sciences, 2012; 
National Council of Teachers of Mathematics, 2000, 2014; National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010). The standards uniformly call for integrating 
mathematical reasoning and digital computations when solving problems. As will be shown in the paper, the 
context of elementary number theory provides ample opportunities for such integration.  

Methods specific for mathematics education used in this paper include computer-based mathematics 
education, standards-based mathematics, problem solving and problem posing. In particular, those methods are 
conducive to presenting “teacher candidates with experiences in mathematics relevant to their chosen 
profession” (Association of Mathematics Teacher Educators, 2017). In the United States, many secondary 
mathematics teacher preparation programs offer courses “focused on high school mathematics from an advanced 
standpoint” (Conference Board of the Mathematical Sciences, 2012). Elementary number theory offers ample 
opportunities to teach advance mathematical ideas with the help of technology. The university where the author 
has been preparing teacher candidates to teach mathematics is in upstate New York in close proximity to Canada, 
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and many of the author’s students are Canadians pursuing their master’s degrees in education. As future teachers 
of mathematics, they learn how to think computationally by “expressing problems in such a way that their 
solutions can be reached using computational steps and algorithms” (Ontario Ministry of Education, 2020). This 
diversity of students suggests the importance of aligning mathematics education courses with multiple 
international perspectives on teaching and learning the subject matter in the digital era.  

Problem-solving methods and conceptual methodology used in this paper follow the TITE (technology 
immune/technology enabled) framework introduced in Abramovich (2022). A TITE problem cannot be 
automatically solved by software (thus, it is immune from the direct use of technology), yet the role of software 
in solving the problem remains critical (thus, its solution is enabled by technology) because, especially “in 
complex calculations, the effectiveness of learning can be enhanced by using computation tools” (Takahashi et 
al., 2006). An important aspect of the TITE idea is that when the TI (technology immune) part precedes the TE 
(technology-enabled) part of problem solving, depending on a problem, there are at least two outcomes available: 
an error in the TI part would either be neglected or recognized through the action of the TE part. That is why, 
checking the result of symbolic computations in a special case, the accuracy of which is semi-evident, should be 
included in a TITE problem solving (see sections 5-7). Likewise, a TI activity may follow a TE one and while 
the latter would have no error, the former may include erroneous interpretation of the results of the latter. 
Another important aspect of the TITE idea deals with its duality in a sense that whereas the TE part may inform 
the TI part, the latter, without conceptual understanding of the former, may lead desired generalization astray. 
At the same time, the TI part can be used to improve the efficiency of the TE part, which, in turn, supports the 
advancement of the TI part at the level of generalization. Different TITE problems will be considered in sections 
5-7 below.  

 

3. Triangular Numbers 
Many mathematics education papers published around the world within the last two decades have been 

devoted to activities with triangular numbers. Canadian mathematics teacher educators (Simmt, Davis, Gordon, 
& Towers, 2003) discussed the emergence of triangular numbers in the context of the so-called toothpicks 
(alternatively, matchsticks (Hershkowitz, Arcavi, & Bruckheimer, 2001) problem. Mathematics educators 
Pedemonte and Buchbinder (2011) described their work in Italy with upper secondary school students (17-18 
years old) towards finding and proving a general rule for the n-th triangular number by counting the number 
of dots in an equilateral triangle with n dots on a side representing a triangular number (see the top part of 
Figure 2).  Researchers from Philippines (Berana, Montalbo, & Magpantay, 2015) motivated by work of Asiru 
(2008) in Nigeria, presented several summation formulas in the context of triangular numbers using the method 
of mathematical induction for their proof. Bütüner (2016) in the context of upper middle school in Turkey 
advocated for the use of history of mathematics and concrete materials in the teaching of formulas for the sums 
of natural, triangular, and square numbers (see formulas (1), (8), (14) below). German mathematics educators 
(Nührenbörger et al., 2016) described how fourth graders were developing a formula for triangular numbers in 
the context of substantial learning environments (Wittmann, 2001). A Spanish mathematics educator Plaza 
(2016) demonstrated visual development of formulas, including the sum of triangular numbers, using the “proof 

without words” approach. Most recently, Demircioğlu (2023) expressed concern regarding low ability of 
Turkish future teachers of fourteen-age students in proving the (ready-made rather than mathematically 
derived) formula for the sum of triangular numbers (see below formula (8) computationally generated by 
Wolfram Alpha) using the method of mathematical induction. Despite their worldwide span and the diversity of 
contexts, none of the above-mentioned papers used digital technology in the context of triangular and other 
polygonal numbers. This may serve as a justification for writing the present paper in order to promote the use 
of digital tools enabling deeper inquiries into the properties of polygonal numbers. In no small part, the paper 
confirms the viewpoint “mathematics courses that explore elementary school mathematics in depth can be 
genuinely college-level intellectual experiences, which can be interesting for instructors to teach and for the 
teachers to take” (Conference Board of the Mathematical Sciences, 2012).  

As is well known, triangular numbers (the images of which are shown in Figure 1 and 2) are partial sums 

of natural numbers (e.g., the n-th triangular number 𝑡𝑛 is the sum of the first n natural numbers where n is the 

rank of the number 𝑡𝑛). Such partial sums are 1, 1 + 2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10, 1 + 2 + 3 + 4 + 5 
= 15, and, in general,  

𝑡𝑛 = 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 .   (1) 

There are many interesting properties that triangular numbers 𝑡𝑛 satisfy. For example, the difference 
between two consecutive triangular numbers is the rank of the larger number (the top part of Figure 1) and the 
sum of two consecutive triangular numbers is a square of the rank of the larger number (bottom part of Figure 
1). Using formula (1), the two statements can be immediately verified:  

𝑡𝑛 − 𝑡𝑛−1 =
𝑛(𝑛+1)

2
−

(𝑛−1)𝑛

2
= 𝑛 ,       (2) 

 𝑡𝑛 + 𝑡𝑛−1 =
𝑛(𝑛+1)

2
+

(𝑛−1)𝑛

2
= 𝑛2 .   (3) 
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Figure 1. Adding and subtracting two consecutive triangular numbers. 

 
 

Furthermore, the bottom part of Figure 1 shows how a square can be constructed from circular objects 
forming two right isosceles triangles the legs of which differ by one circle. In the words of a teacher candidate, 
the author’s student, “When thinking of square numbers, it is good to have students look at diagrams of triangular 
numbers first. In looking at triangular numbers, teachers and students can work together to add triangular numbers to form 
square numbers”. The candidate’s focus on working together indicates their appreciation of the constructivist 
notion of reciprocal learning (Confrey, 1995; Steffe, 1991) which, in turn, motivates the diversity of students’ 
mathematical ideas. In particular, a classroom culture of reciprocal learning can be seen as one of the elements 
of educational data analysis demonstrating how teachers’ leadership skills affect students’ engagement and 
participation in problem solving. 

Also, connection between triangular and square numbers is significant from a historical perspective. 
Leonhard Euler, father of all modern mathematics, in 1778 found an explicit formula for numbers, called square 
triangular numbers (Dickson, 2005) that are both triangular and square. This is a classic number theory problem 
known from the time of Diophantus, a 3rd century Greek mathematician. The first four such numbers – 1, 36, 
1225, 41616 – when entered into the input box of Wolfram Alpha enable the tool to generate their continuation 
and, in addition, to offer information provided by OEIS®, thereby demonstrating how the use of “mathematical 
action technologies” (National Council of Teachers of Mathematics, 2014) in the context of teacher education 
“immensely extends the possibility of behavior by making the results of the work by geniuses available to 
everyone” (Vygotsky, 1930). Furthermore, connection between triangular and square numbers represented 
through relation (3) was used by Élie de Joncourt, an 18th century Dutch minister of church and mathematics 
teacher, to compute squares and square roots (Roegel, 2013). Including mathematical perspectives in a course 
for teacher candidates allows them to appreciate “mathematics as a living and evolving subject” (Conference 
Board of the Mathematical Sciences, 2012). As mentioned by another teacher candidate, “I think understanding 
the history of mathematics might make understanding why we do it and why it is important easier. When you can put a 
starting point or reason behind something, I think understanding naturally follows more easily”. This comment by a 
future teacher of mathematics rhymes with professional opinions about educative significance of the subject 
matter’s history which “keeps students active ... by facilitating various uses of historical content” (Bütüner, 2016) 
and “makes mathematics more interesting, more understandable, and more approachable” (Fried, 2001). 
Moreover, using technology makes it easier to talk about “a starting point” that over the centuries evolved into 
today’s choice of mathematics education topics the instrumental value of which is in promoting discovery 
(McEwan & Bull, 1991). 

Any triangular number is a sum of a multiple of three and another triangular number. Indeed, as shown in 

Figure 2 (the bottom part),  10 = 3 × 3 + 1, 15 = 3 × 4 + 3, 21 = 3 × 5 + 6. Such representations may not be 

unique for a triangular number. Already, 15 = 3 × 3 + 6 = 3 × (6 − 3) + 6  and 21 = 3 × 2 + 15. Teacher 
candidates, especially at the elementary level, do not have much experience with questions allowing for more 
than one correct answer. At the same time, they are expected to “tailor instruction in ways that build on what 
students understand and consistently encourage students to stretch their mathematical thinking” (Association 
of Mathematics Teacher Educators, 2017). However, among such multiple representations there is always a 
representation in which the number repeated three times is one smaller than the rank of the triangular number 
being represented; alternatively, the difference between two triangular numbers located between the represented 
one and the addend in the right-hand side of the relation in question. For example, in the representation of the 
5th triangular number 15 the number 4 is the rank of the triangular number 10 and, according to relation (2), 
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the equality 4 = 10 – 6 holds true; alternatively, 6 and 10 are triangular numbers located between 3 and 15. That 

is, one can write 15 = 3 × (10 − 6) + 3 . Likewise, in the representation 21 = 3 × 5 + 6  the number 5 = 6 −
1 = 15 − 10.  That is, 21 = 3 × (15 − 10) + 6. One can generalize from the diagrams of Figure 2 to have the 
relation  

𝑡𝑛 = 3 × (𝑡𝑛−1 − 𝑡𝑛−2) + 𝑡𝑛−3.      (4) 
Proof of relation (4) is based on formula (1) and relation (2). Using (1) and (2) yields  
𝑛(𝑛+1)

2
= 3 × (𝑛 − 1) +

(𝑛−3)(𝑛−2)

2
  whence 𝑛2 + 𝑛 = 6𝑛 − 6 + 𝑛2 − 5𝑛 + 6. Because the last equality holds 

true for all n, so does relation (4).  

 
Figure 2. Triangular numbers as sums of a multiple of three and a triangular number. 

 
Remark 1. One might think that the divisibility by three observation is due to the fact that triangular 

numbers are represented by triangles (top part of Figure 2) and that a triangular number is either a multiple of 
three or one greater than a multiple of three (bottom part of Figure 2). However, in the case of square numbers 

1, 4, 9, 16, 25, 36, 49 ..., one can recognize similar relationships (including more than one) such as 16 = 3 × 5 +
1 = 3 × (9 − 4) + 1, 25 = 3 × 7 + 4 = 3 × (16 − 9) + 4, 36 = 3 × 9 + 9 = 3 × (25 − 16) + 9, 49 = 3 ×
11 + 16 = 3 × (36 − 25) + 16, which show that a square number is a sum of an odd multiple of three plus 

another square number (Figure 3 shows a possible representation of 25 as 7 + 7 + 7 + 4). Although 16 =
3 × 4 + 4 and 25 = 3 × 8 + 1,  neither 4 nor 8 is an odd number – the only possible difference between two 
consecutive square numbers and in that sense the last two representations of 16 and 25 are different from those 
with differences 5 and 7. One can check to see that the same type of relationships can be developed for pentagonal 

numbers 1, 5, 12, 22, 35, 51, .... For example, 51 = 3 × 13 + 12 = 3 × (35 − 22) + 12. In general, among four 
consecutive polygonal numbers of side m the following relation holds true 

𝑃(𝑚, 𝑛) = 3 × (𝑃(𝑚, 𝑛 − 1) − 𝑃(𝑚, 𝑛 − 2)) + 𝑃(𝑚, 𝑛 − 3).                 (5) 

Here 𝑃(𝑚, 𝑛) =
𝑛2(𝑚−2)−𝑛(𝑚−4)

2
 – an m-gonal number of rank n.  The proof of relation (5) can be outsourced 

to Maple (Figure 4). To clarify the use of Maple, note that everything that needs to be typed in the program here 
and elsewhere when proving algebraic identities is included after the > sign with calculations followed; the 
percentage symbol in the Maple language means “the latter”; simplification yields zero; in particular, the first 

typing introduces the expression for 𝑃(𝑚, 𝑛) and the second typing defines the difference between the left- and 
the right-hand sides of (5) to be computed symbolically. As will be shown in the next section, the factor three 
appearing in (4) and (5) is due to the length of a string of the polygonal numbers considered. One can say that 
the factor three represents the invariance as a property of any four consecutive m-gonal numbers that remains 
unchanged when the value of m changes. In the words of Singaporean mathematics educators, teaching that 
focuses on big ideas “brings one closer to appreciating the nature of mathematics” (Ministry of Education 
Singapore, 2020). Recognition of invariance is preceded by recognition of patterns, something that is commonly 
described as the essence of mathematics (Delvin, 1994; National Council of Teachers of Mathematics, 2000; 
Resnik, 1999; Western and Northern Canadian Protocol, 2008). As one teacher candidate, another student by 
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the author, exclaimed, “I have been shocked and surprised by some of the patterns that are sitting right in front of me that 
I was not aware of! It is pretty interesting how some brains are different than others and pick up on patterns so easily!”. As 
will be shown below through patterns’ recognition, the change of the (even) length of a string of m-gonal 
numbers yields a new (odd) factor. 

 

 
Figure 3. Visual demonstration of the equality 25 = 3 × 7 + 4. 

 
 

 
Figure 4. Using maple in proving relation (5). 

 

4. Generalizing from Formula (5) 
If one considers the first six triangular numbers 1, 3, 6, 10, 15, 21, then, as shown at the left-hand side of 

Figure 5, the number 21 (= 1 + 2 + ... + 6) is one greater than a multiple of five, i.e., 21 = 5 × 4 + 1 =
5 × (10 –  6) + 1. Likewise, if one considers the first eight triangular numbers 1, 3, 6, 10, 15, 21, 28, 36,  then, 
as shown at the right-hand side of Figure 5, the number 36 (= 1 + 2 + ... + 8) is one greater than a multiple of 

seven, i.e., 36 = 7 × 5 + 1 = 7 × (15 –  10) + 1.  One can check to see that similar relationships hold true in 
the case of other strings of six and eight consecutive triangular numbers, respectively. Generalizing from such 

numeric equalities, yields two symbolic relations 𝑡𝑛 = 5(𝑡𝑛−2 − 𝑡𝑛−3) + 𝑡𝑛−5  and 𝑡𝑛 = 7(𝑡𝑛−3 − 𝑡𝑛−4) + 𝑡𝑛−7  
that hold true among four numbers selected out of, respectively, six and eight consecutive triangular numbers 
(see Figure 5, left and right, for n = 6 and n = 8, respectively). Furthermore, the following generalization can be 

inductively formulated for four numbers (the first, the last, and two in the middle) selected out of 2𝑘 + 2 
consecutive m-gonal numbers: 

𝑃(𝑚, 𝑛) = (2𝑘 + 1)(𝑃(𝑚, 𝑛 − 𝑘) − 𝑃(𝑚, 𝑛 − 𝑘 − 1)) + 𝑃(𝑚, 𝑛 − 2𝑘 − 1).      (6) 

Once again, the proof of relation (6) can be outsourced to Maple (Figure 6; as was mentioned above, the 
percentage symbol in the Maple language means “the latter”; simplification yields zero). One can say that the 
two consecutive integers 2k + 1 and 2k + 2 represent the invariance as the property, expressed by relation (6), 
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of any string of the latter length of consecutive m-gonal numbers that remains unchanged as m changes and the 
case k = 1 expressed by relation (5) is a special case of this invariance. 

 

 
Figure 5. Triangular numbers as sums of multiples of five and seven plus one. 

 

 
Figure 6. Using maple to prove formula (6). 

 
5. Constructing Triangles using Triangular Numbers as a TITE Problem 

In this section, numeric and symbolic activities with triangular numbers will be integrated with their 
arrangement in triangular shapes using the TITE framework (explained in detail in section 2). One such 
integration is when visual enhanced by numeric enables transition to symbolic number theory explorations at 
the level of generalization. However, due to the duality of the TITE framework, when the TE part not only 
informs the TI part, but without conceptual understanding of what technology is supposed to deliver, the TI 
part might go astray at the level of generalization, the following (teacher education) classroom episode is worth 
noting.  

A teacher candidate, when dealing with the following four numbers 2, 3, 5, 8 (after finding that among the 
binary numbers in which 1’s are always separated by at least one 0, there are exactly 2, 3, 5 and 8 of one-, two-, 
three-, and four-digit binary strings, respectively), and being asked to inductively continue the sequence by 
recognizing a pattern, recognized (instead of Fibonacci recursion) that each term beginning from the second 
augments a triangular number by two (3 = 1 + 2, 5 = 3 + 2, 8 = 6 + 2), continued the sequence with the numbers 

12 (= 10 + 2), 17 (= 15 + 2), 23 (= 21 + 2), and finally concluded that the sequence has the form 
𝑛(𝑛−1)

2
+ 2 =

𝑛−𝑛+4

2
, 𝑛 = 1, 2, 3, … . At the same time, after being introduced to a special ready-made spreadsheet programmed 

to generate binary numbers (not discussed here for its complexity), the candidate found out that the number of 
five-digit binary strings in which 1’s are always separated by at least one 0 is 13 and not 12. It is interesting to 
note that when the four numbers 2, 3, 5, 8 are entered into the input box of Wolfram Alpha, the tool offers 
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continuation in the form 𝑎(𝑛) =
𝑛−𝑛+4

2
 . This episode suggests that transition from numeric to symbolic (or 

from visual to symbolic) would be more accurate when one possess some initial understanding of how the 
symbolic should look like (Arnheim, 1969). On the other hand, accepting the above continuation (of what might 
be “obvious” for some as four consecutive Fibonacci numbers) supports an educational recommendation that 
when dealing with students whose thinking is different from what is expected, one should have intellectual 
courage to acknowledge the unexpected “as strength and resources upon which to build” (Association of 
Mathematics Teacher Educators, 2017). 

TITE mathematical problem solving may include the use of multiple software tools in support of a single 
task to enable rigor in problem solving through computational triangulation (Abramovich, 2022). In many cases, 
using different tools—numeric, symbolic, graphic—not only provides rigor in solving a problem but it also 
motivates one’s deep thinking about computationally obtained results that can lead to formulating new 
problems. Furthermore, the diversity of digital tools fosters computational thinking (Wing, 2006) which, among 
other “transferable skills ... [is] in high demand in today’s globally connected world, with its unprecedented 
advancement in technology” (Ontario Ministry of Education, 2020). At the same time, because, in the words of 
mathematics educators in South Africa (Department of Basic Education, 2018) “mathematics teachers, and not 
ICT [Information and Communication Technology] tools, are the key to quality education”, students’ growth 
in computational thinking and awareness of technological diversity requires a “more knowledgeable other” 
(Vygotsky, 1978) in a mathematics classroom. 

As the first example of a TITE number theory problem, consider an equilateral triangle (the top-right part 
of Figure 2) which represents the development of triangular numbers as partial sums of consecutive natural 
numbers.  Here, each natural number is represented by a row of circles so that the partial sums are 1 = 1, 3 = 1 
+ 2, 6 = 1 + 2 + 3, ..., 21 = 1 + 2 + ... + 6. The representation of 21 as the 6th partial sum can be interpreted 
under the assumption that each circle has numerical value equal to one. But in the case of alternative numeric 
assignments for the circles, one can consider partial sums of the numbers as being assigned to the circles. One 
can assign to each circle a triangular number so that the entire triangle is filled with consecutive triangular 

numbers. Figure 7 shows such an assignment for an equilateral triangle comprised of six rows. Let 𝑆𝑛,1
3  be the 

sum of the numbers in the first n rows of the (extended) triangle of Figure 7. In the notation 𝑆𝑛,1
3 , the top index 

3 points at triangular numbers, the bottom indices n and 1 point, respectively, at the number of rows in the sum 

and the difference between the number of circles in two neighboring rows. Finding a formula for 𝑆𝑛,1
3   and 

computing its symbolic expression represent a TITE problem. 
To solve the problem under TITE umbrella, one begins with constructing a formula (a TI step) for 

computing 𝑆𝑛,1
3  (a TE step). In Figure 7 there are six rows with the far-right number being the triangular 

number the rank of which is also a triangular number with the rank being the column’s number. For example, 

in Figure 7 the far-right number in row 2 is 6 = 𝑡3 = 𝑡𝑡2
, the far-right number in row 3 is 21 = 𝑡6 = 𝑡𝑡3

, the 

far-right number in row 4 is 55 = 𝑡10 = 𝑡𝑡4
, and so on. If the far-right number in row n (having n circles) is 𝑡𝑡𝑛

, 

then row (n + 1) has the next triangular number 𝑡𝑡𝑛+1 at the far-left and the number 𝑡𝑡𝑛+1
at the far-right. Indeed, 

if the far-left number in row (n + 1) with (n + 1) circles is 𝑡𝑡𝑛+1, then the next number in this row is 

𝑡𝑡𝑛+2 , followed by the number 𝑡𝑡𝑛+3, ..., so that the far-right number in this row is 𝑡𝑡𝑛+(𝑛+1).  Due to formula 

(2), 𝑡𝑛+1 − 𝑡𝑛 = 𝑛 + 1  and, therefore,  𝑡𝑡𝑛+(𝑛+1) = 𝑡𝑡𝑛+1
. So, the far-right number in the n-th row is 𝑡𝑡𝑛

. That 

is, 

𝑆𝑛,1
3 = 1 + 3 + 6 + ⋯ + 𝑡𝑡𝑛

.        (7) 

The right-hand side of relation (7) represents the sum of the first 𝑡𝑛 triangular numbers. But first, one has 
to find the sum of the first n triangular numbers. Nowadays, such sum can be found using Wolfram Alpha (Figure 
8) and formula (1) to get 

1 + 3 + 6 + ⋯ +
𝑛(𝑛+1)

2
=

𝑛(𝑛+1)(𝑛+2)

6
 .       (8) 

In order to complete summation in (7), one either can use formula (8) in which n has to be replaced by 𝑡𝑛 =
𝑛(𝑛+1)

2
  (TI step, envisioning the sum to be a polynomial of degree six) to get 𝑆𝑛,1

3 =
𝑛(𝑛+1)(𝑛2+𝑛+2)(𝑛2+𝑛+4)

48
, or 

do it computationally (TE step) by entering into the input box of Wolfram Alpha the command “sum i(i+1)/2 for 
i=1 to n(n+1)/2”. (Note that every screen shot of the program pictured in this paper includes the expression of 
summation, like i(i+1)/2, as well as its boundaries, like 1 and n(n+1)/2, aiding similar computations). As shown 
in Figure 9, the TE step quickly processes the corresponding TI step and yields the relation  

𝑆𝑛,1
3 = ∑

𝑖(𝑖+1)

2
=

𝑛(𝑛+1)(𝑛2+𝑛+2)(𝑛2+𝑛+4)

48

𝑛(𝑛+1)

2
𝑖=1

 .      (9) 

As a kind of verification of the accuracy of the above TITE problem solving, when a TE step simply executed 

the preceding TI step, one can check to see that formula (9) generates 10 when n = 2. Indeed,  𝑆2,1
3 =

2×3×8×10

48
=

10  – the sum of numbers in the first two rows of Figure 7.  Other TITE problems will be suggested in sections 
6 and 7 below. 
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Remark 2. As noted by mathematics educators in Japan, “algebraic expressions ... may be modified into a 
form that is more easily interpreted” (Isoda, 2010). With this in mind, comparing formulas (8) and (9), one can 
conclude that whereas the sum of the first n triangular numbers is 1/6 of the product of three consecutive integers starting 

from n, the sum of the first 𝑡𝑛 triangular numbers is 1/6 of the product of three consecutive integers starting from 𝑡𝑛 =

𝑛(𝑛+1)

2
 . Indeed, 

𝑛(𝑛+1)(𝑛2+𝑛+2)(𝑛2+𝑛+4)

48
=

𝑛(𝑛+1)

2
(

𝑛(𝑛+1)

2
+1)(

𝑛(𝑛+1)

2
+2)

6
 . For example, when n = 4 we have 𝑡4 = 10  

and the sum of the first ten triangular numbers 1 + 3 + 6 + ⋯ + 55 =
10×11×12

6
= 220. 

 

 
Figure 7. An equilateral triangle filled with consecutive triangular numbers. 

 
 

 
Figure 8. Calculating the sum of the first 𝑛 triangular numbers. 

 

 
Figure 9. Calculating the sum of the first 𝑡𝑛 triangular numbers. 
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6. Constructing Triangles using Square Numbers as a TITE Problem 
Just as in the case of triangular numbers, a problem can be posed to investigate the arrangement of square 

numbers in triangles having rows with lengths forming an arithmetic progression. Let 𝑆𝑛,𝑘 
4 , (𝑘 = 1, 2,3), be the 

sum of the numbers in the first n rows of the (extended) triangles of Figure 10 and 11, respectively. Finding 
symbolic expressions for the three sums is a TITE problem. As shown in the diagram of Figure 10, a 
mathematical analysis of which (and the diagrams that follow) is a TI part of the problem, when the difference 
between two consecutive lengths is equal to one, the far-right number in the n-th row is the square of the 
triangular number of rank n. Therefore, using Wolfram Alpha as a TI part of the problem, one can find that the 
sum of numbers in n rows of the extended diagram of Figure 10 is equal to 

𝑆𝑛,1
4 =

(𝑛2+𝑛)(𝑛2+𝑛+1)(𝑛2+𝑛+2)

24
 .                                          (10) 

As shown in the diagram of Figure 11 (top), when the difference between two consecutive lengths is equal 

to two, the far-right number in the n-th row is the square of 𝑛2. Therefore, using Wolfram Alpha as a TI part of 
the problem, one can find that the sum of numbers in n rows of the extended diagram of Figure 11 (top) is equal 
to  

  𝑆𝑛,2
4 =

𝑛2(𝑛2+1)(2𝑛2+1)

6
 .                                          (11) 

As shown in the diagram of Figure 11 (bottom), when the difference between two consecutive lengths is 
equal to three, the far-right number in the n-th row is the square of the pentagonal number of rank n. Therefore, 
using Wolfram Alpha as a TI part of the problem, one can find that the sum of numbers in n rows of the extended 
diagram of Figure 11 (bottom) is equal to  

 𝑆𝑛,3
4 =

(3𝑛2−𝑛)(3𝑛2−𝑛+1)(3𝑛2−𝑛+2)

24
 .       (12) 

Similarly, using Wolfram Alpha, one can compute  

𝑆𝑛,4
4 =

(2𝑛2−𝑛)(2𝑛2−𝑛+1)(4𝑛2−2𝑛+1)

6
.        (13) 

Remark 3. The right-hand sides of relations (10) – (13) can be modified to be written in the form of the 
well-known formula 

 12 + 22 + 32 + ⋯ + 𝑘2 =
𝑘(𝑘+1)(2𝑘+1)

6
 .          (14) 

Indeed, in the case of relation (10), setting 𝑘 =
𝑛2+𝑛

2
 – the triangular number of rank n, we have 

(𝑛2+𝑛)(𝑛2+𝑛+1)(𝑛2+𝑛+2)

24
=

𝑘(𝑘+1)(2𝑘+1)

6
 . In other words, when the number of addends in the sum of the first square 

numbers is the n-th triangular number 𝑡𝑛, this sum is equal to 1/6 of the three-factor product 𝑡𝑛 × (𝑡𝑛 +

1) × (2𝑡𝑛 + 1). In particular, when n = 2 we have 𝑡2 = 3 and 1 + 4 + 9 = 
3×4×7

6
= 14.  In the case of relation 

(11), setting 𝑘 = 𝑛2 – the square number of rank n, we have 
𝑛2(𝑛2+1)(2𝑛2+1)

6
=

𝑘(𝑘+1)(2𝑘+1)

6
 . In other words, 

when the number of addends in the sum of the first square numbers is the n-th square number 𝑠𝑛, this sum is 

equal to 1/6 of the three-factor product 𝑠𝑛 × (𝑠𝑛 + 1) × (2𝑠𝑛 + 1). In particular, when n = 2 we have 𝑠2 = 4 

and 1 + 4 + 9 + 16 = 
4×5×9

6
= 30. In the case of relation (12), setting 𝑘 =

3𝑛2−𝑛

2
 – the pentagonal number of 

rank n, we have 
(3𝑛2−𝑛)(3𝑛2−𝑛+1)(3𝑛2−𝑛+2)

24
=

𝑘(𝑘+1)(2𝑘+1)

6
 . In other words, when the number of addends in the 

sum of the first square numbers is the n-th pentagonal number 𝑝𝑛, this sum is equal to 1/6 of the three-factor 

product 𝑝𝑛 × (𝑝𝑛 + 1) × (2𝑝𝑛 + 1). In particular, when n = 2 we have 𝑝2 = 5 and 1 + 4 + 9 + 16 + 25 = 
5×6×11

6
= 55. In the case of relation (13), setting 𝑘 = 2𝑛2 − 𝑛 – the hexagonal number of rank n, we have  

 (2𝑛2−𝑛)(2𝑛2−𝑛+1)(4𝑛2−2𝑛+1)

6
=

𝑘(𝑘+1)(2𝑘+1)

6
 (Figure 12). In other words, when the number of addends in the sum 

of the first square numbers is the n-th hexagonal number ℎ𝑛 , this sum is equal to 1/6 of the three-factor product 

ℎ𝑛 × (ℎ𝑛 + 1) × (2ℎ𝑛 + 1). In particular, when n = 2 we have ℎ2 = 6 and 1 + 4 + 9 + 16 + 25 + 36 = 
6×7×13

6
=

91. In general, setting 𝑘 =
𝑛2(𝑚−2)−𝑛(𝑚−4)

2
 – the m-gonal number of rank n, the use of Wolfram Alpha (Figure 

13) in finding ∑ 𝑖2
𝑛2(𝑚−2)−𝑛(𝑚−4)

2
𝑖=1

 yields the relation  
(𝑛2(𝑚−2)−𝑛(𝑚−4))(𝑛2(𝑚−2)−𝑛(𝑚−4)+1)(𝑛2(𝑚−2)−𝑛(𝑚−4)+2)

24
=

𝑘(𝑘+1)(2𝑘+1)

6
 . In other words, when the number of addends in the sum of the first square numbers is the n-th m-

gonal number 𝑃(𝑚, 𝑛), this sum is equal to 1/6 of the three-factor product 𝑃(𝑚, 𝑛) × (𝑃(𝑚, 𝑛) +
1) × (2𝑃(𝑚, 𝑛) + 1). 

Remark 4. Representing the right-hand sides of relations (12) and (13) in the form 
𝑘(𝑘+1)(2𝑘+1)

6
  may be 

seen as the first step towards proving that the corresponding products are multiples of six. To complete the 

proof, one has to assume that 𝑘(𝑘 + 1)(2𝑘 + 1) is a multiple of 6 and then make an inductive transfer from k to 

k + 1 by noting that (𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) − 𝑘(𝑘 + 1)(2𝑘 + 1) = 6(𝑘 + 1)2 thereby implying that 



International Journal of Educational Technology and Learning, 2024, Vol. 17, No. 2, pp. 28-42 

 

 

38 

transition from k to k + 1 preserves divisibility by six. Note that the content of the last two remarks shows how 
a TI part may follow a TE part within a TITE problem. 

 

 
Figure 10. Arrangement of square numbers within an equilateral triangle. 

 
 

 
Figure 11. Alternative arrangements of square numbers in isosceles triangles. 
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Figure 12. Calculating the sum of the first ℎ𝑛 square numbers. 

 
 

 
Figure 13. Calculating the sum of the first 𝑃(𝑚, 𝑛) square numbers. 

 

7. Suggestions for Further Explorations 
Other geometric arrangements of polygonal numbers can be explored. Suggested explorations can be used 

as independent capstone projects in technology-enhanced problem-solving courses. Such projects allow 
secondary teacher candidates to “take up classical ideas that are not normally included in a mathematics major” 
(Conference Board of the Mathematical Sciences, 2012) and explore them through the TITE lens to see “how 
reasoning and proof occur through the high school mathematics outside of their traditional home in axiomatic 
Euclidean geometry” (ibid: 59). For example, consecutive triangular numbers can be arranged in squares 
forming a staircase the stairs of which increase in size by one, two, three, four, etc. rows of circles. Consider the 

case of the sequence of squares (2𝑛 − 1) × (2𝑛 − 1), 𝑛 = 1, 2, 3, …., in which consecutive odd numbers are the 
dimensions of the squares (Figure 14). The ranks of triangular numbers assigned to the first and the last circles 
in this sequence of squares are (1, 1), (2, 10), (11, 35), (36, 84), (85, 165), .... In general, the first and the second 

elements of those pairs are described by the sequences (found through Wolfram Alpha)  𝑎𝑛 =
𝑛(4𝑛2−12𝑛+11)

3
 and 

𝑏𝑛 =
𝑛(4𝑛2−1)

3
 , respectively. Indeed, 𝑎3 = 11, 𝑏3 = 35. That is, the square of rank n in the sequence 

(2𝑛 − 1) × (2𝑛 − 1) would begin and end with the triangular numbers 𝑡𝑎𝑛
=

𝑎𝑛(𝑎𝑛+1)

2
 and 𝑡𝑏𝑛

=
𝑏𝑛(𝑏𝑛+1)

2
. A 

TITE problem is to prove the relation 

𝑡𝑏𝑛+1 = 𝑡𝑎𝑛+1
.       (15) 

Computations can be outsourced to Maple (Figure 15; as was mentioned above, the percentage symbol in 
the Maple language means “the latter”; simplification yields zero). 

Likewise, the squares can be filled with squares and pentagonal numbers, so that in the case of the sequence 

of squares (2𝑛 − 1) × (2𝑛 − 1) the following relations can be proved: 

𝑠𝑏𝑛+1 = 𝑠𝑎𝑛+1
    (16) 

and  

 𝑝𝑏𝑛+1 = 𝑝𝑎𝑛+1
 ,     (17) 

Where 𝑠𝑎𝑛
= (𝑎𝑛)2 and  𝑝𝑎𝑛

=
𝑛(3𝑛−1)

2
 . 

A TITE characterization of problems associated with relations (16) and (17) is in using mathematical 
reasoning in their formulation and technology in their proving. In fact, both TI and TE parts of the problems 
go hand in hand because an error in mathematical reasoning would be recognized by a digital tool through 
technological rejection of an identity as an erroneous mathematical formulation. This type of TITE problem on 
proving an identity is different from the problem of section 5 on finding a certain sum of triangular numbers 
which resulted in the development of relation (7) the correctness of which hinged on the verification of a special 
case with reference to Figure 7. 
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Figure 14. Triangular numbers arranged in squares forming a staircase. 

 

 
Figure 15. Using Maple to prove identity (15). 

 

8. Conclusion 
The paper dealt with technology-supported elementary number theory activities in a mathematics teacher 

education context. Reviewing recently published mathematics education research from Canada, Germany, Italy, 
Nigeria, Philippines, Spain and Turkey revealed no use of digital tools in teaching triangular (and other 
polygonal) numbers either at the college or pre-college levels. This absence of computers in the educational 
context of triangular numbers was a motivation for writhing the paper. Different geometric arrangements of 
polygonal numbers were explored. The arrangements included equilateral and isosceles triangles the shapes of 
which were defined by arithmetical sequences. Computational summation of numbers included in those 
arrangements was supported by Maple and Wolfram Alpha. It is the complexity of such arrangements forming 
integrated patterns defined by number sequences organized in geometric shapes that required symbolic 
computations for understanding mathematical behavior of the patterns. Ideas for further explorations involving 
arrangements of polygonal numbers into squares forming a staircase were briefly discussed and suggested for 
independent capstone projects. 

It was shown how number theory and geometry as different branches of mathematics can be united under 
an umbrella enriched by historical perspectives (Jankvist, 2009). An emphasis on multiple representations of 
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ideas associated with polygonal numbers demonstrated how students, by “recognizing, describing, and working 
with numerical and non-numerical patterns ... develop fluency in moving from one representation to another” 
(Western and Northern Canadian Protocol, 2008). Comments of teacher candidates, the author’s students, 
related to pattern recognition and the value of history in mathematics teaching were shared as appropriate. 
Those comments can be interpreted as qualitative evidence (collected by the author over the years through 
different means) of the value of digital tools in teaching topics from elementary number theory to teacher 
candidates.  

Polygonal numbers provide context that integrates symbolic artistry and visual understanding in 
mathematical problem solving. The importance of such integration was recognized by Jean-Jacques Rousseau, 
a Genevan philosopher and writer of the 18th century, in his autobiographical book Confessions 
(https://en.wikipedia.org/wiki/Confessions_(Rousseau)), “The first time I found by calculation that the square 
of a binomial consisted of the squares of its two parts plus twice the product of the two, I refused to believe it 
until I has drawn the figure” (cited in Arnheim (1969)). Whereas this approach can be traced even deeper in the 
history of civilization – as Aristotle in the 4th century B.C. noted “the soul never thinks without an image” (cited 
in (ibid: 12)) – it also points at the limitation of the present paper as teaching dense mathematical ideas in the 
spirit of great thinkers of the past requires a “more knowledgeable other” (Vygotsky, 1978) in the classroom. 

Three types of technology-immune/technology-enabled (TITE) problems were highlighted. The first type 
includes problems in which the correctness of computations (TE part) hinges on the correctness of mathematical 
reasoning (TI part) responsible for the creation of computational algorithms. This type was highlighted through 
understanding of Figure 7 (section 5) in which the last number in row n is the triangular number of rank 
𝑛(𝑛+1)

2
 . The second type includes problems in which the diversity of reasoning by induction (TI part) can lead 

to computing (TE part) the results of which dissent from the context which produced limited numerical evidence 
to support induction. This type was highlighted through counting the number of binary strings of different 
lengths by a teacher candidate (section 5). The third type (section 7) includes problems dealing with proving 
identities (TE part) constructed through the interpretation of geometric constructions (TI part). This type was 
described as having the correctness of the TI part being dependent on the outcome of the TE part in a sense 
that the failure to arrive to this outcome indicates the inaccuracy of mathematical thinking involved. A similar 
idea applies to any use of software in proving relations requiring complex symbolic computations (e.g., relation 
(6) in section 4).  

The activities suggested in the paper can be used primarily with secondary mathematics teacher candidates. 
At the elementary level of teacher education, some of the activities can be used to demonstrate mathematical 
ideas presented in Figures 1–3 and Figure 5. At the tertiary level outside of teacher education, the activities can 
be used with non-mathematics majors as a way of demonstrating the power of the modern-day digital tools 
which can handle rather sophisticated symbolic computations using simple mathematical algorithms. As it was 
shown in the paper, despite the relative simplicity of those algorithms, their creation requires certain level of 
mathematical competency and proficiency in the joint use of reasoning and computations. These skills are 
important for epistemic and pragmatic development of the 21st century STEM (science technology engineering 
mathematics)-oriented workforce. 
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